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ABSTRACT

We present a method that utilizes the observational relation between velocities and sizes of molecular clouds
(MC), together with a recent model for large-scale turbulence, to uncover the instability responsible for the type
of turbulence observed in MC and the value of the physical parameters of the “placental medium” from which

turbulence originated.
Subject headings: interstellar: matter — turbulence

I. THE PROBLEM

A comprehensive analysis of the measured velocities and
cloud sizes showing a significant correlation of the type

u(l)=v0(,—i), 0.45 < m < .70, (1)

led Larson (1981) to suggest that molecular clouds (MC) are
in a turbulent state (see also Martin and Barrett 1978;
Solomon, Scoville, and Sanders 1979; Fleck 1983). Relation
(1) has been found to hold in three broad regions (Falgarone
and Puget 1984), with radii (in pc), masses (in M), densities
(in cm™?), and velocities (in km s~ 1) given by
A: R=50, M=310° n=12, v=6. (2a)
This corresponds to the giant molecular clouds (GMC), often
referred to as CO clouds (Dame et al. 1984).
B: R=2, M=150, n=750, v=2  (2b)
This corresponds to isolated dark clouds (Wilking and Lada
1983; Leung, Kutner, and Mead 1982; Blitz 1980; Young
et al. 1982), and finally
C: R=02, M=3,

n=2000, »=03, (2

which comprises the smallest dense cores (Dickman and
Clemens 1983; Snell er al. 1984; Myers, Lince, and Benson
1983; Perault, Falgarone and Puget 1984).

The validity of relation (1) for these independent sets of
clouds, ranging over three decades in cloud sizes, suggested to
Myers (1983) that a “widespread and fundamental process,”
rather than a simple coincidence, must be at work.

Stated differently, is there a way to use relation (1) to
uncover the physical instability responsible for the kind of
turbulence observed in MC?
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The pgoal of this Letter is to propose a new method to
extract from the observational relation (1) the following: (a)
the instability responsible for turbulence, and (5) the value of
the parameters of the “placental medium” out of which
turbulence originated. Traditionally, the study of the forma-
tion of large structures out of an otherwise stable homoge-
neous medium begins by assuming a given instability (Parker
1966,1967a, b,1979; Lerche 1967; Elmegreen 1982). The cor-
responding growth rate n(k) versus k is derived and then
maximized so as to obtain the fastest growing mode, to which
there corresponds a given wavelength. If the latter quantities
compare favorably with the typical time scales and sizes of the
system, the instability is assumed to be actually at work.

The above procedure has two limitations. First, one can
never be certain that a given instability, however plausible, is
the only one at work. Second and most important, the linear
mode analysis cannot fulfill the ultimate goal of a complete
instability analysis, namely that of describing what happens to
the instability which in the final stages is responsible for the
break-up of turbulence. To do so, one needs a model of
turbulence to describe how the energy pumped into the largest
scales of the system by the instability gets distributed to all the
smaller scales. Since this cascading process is caused by the
nonlinear interactions (largest eddies become unstable and
break up into smaller units), it is clear that one cannot
elucidate the observationally most interesting phase by means
of the linear growth rate analysis. One needs a model for
large-scale turbulence, LST.

Recently, an analytical model for LST has been constructed
{Canuto and Goldman 1985, hereafter CG), and the results
for convective turbulence have been favorably compared with
laboratory and astrophysical data. The model, based on a new
expression for the nonlinear interactions, yields an analytical
solution for the nonlinear equation satisfied by the turbulence
spectral function, F(k) (see eq. [6]). Since the growth rate
n(k) enters as an ingredient, we can formally write (see eq.

)

F(k) = F[n(k)]. (3)
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In laboratory turbulence, one knows the form of the instabil-
ity n(k) that generates turbulence. One can then use equation
(3) to obtain the spectral function F(k) and other quantities
therefrom.

In astrophysics, one never knows for certain which instabil-
ity is at work. However, one knows, for example, equation (1)
which is equivalent to knowing F(k). One can therefore invert
equation (3) and obtain

n(k) = n[ F(k)]. 4

This method of retrieval of the growth rate can be applied to
any of the three regions discussed above (or to turbulence
other than that encountered in MC). However, we shall limit
ourselves to region A. In fact, since GMC supposedly originate
from an instability of the interstellar medium, whose basic
properties are reasonably well known, our retrieval method
can be tested in region A more stringently than in regions B
and C, whose placental medium is less accurately known.

1I. TURBULENCE

Turbulence is the result of disturbances, i.e., instabilities
generated in an otherwise laminar flow. The resulting flow is
characterized by a spectrum of eddies that can conveniently
be divided into two broad intervals:

Low wavenumber region.—This region is populated by large
eddies containing most of the energy and whose behavior
depends critically on the characteristics of the instability gen-
erating the turbulent state. Because of the almost unlimited
number of ways in which an instability can be generated,
large-scale turbulence cannot be expected to exhibit a “uni-
versal spectrum,” and theoretical treatments of this part of the
eddies’ spectrum have therefore been considered extremely
difficult.

High wavenumber region.—Because of the difficulties in
describing the preceding region, Heisenberg and Kolmogoroff
(HK) proposed a model valid for those eddies that are suffi-
ciently removed from the low wavenumber region to behave
independently of the specific features of the stirring mecha-
nism (i.e., the instability) and also sufficiently removed from
the region where (kinematic) viscosity operates. Having been
selected so as to be disconnected from both the source and the
sink of energy, the HK eddies exhibit a universal character.
Their v(!) versus [ relation is found to be (Batchelor 1970)

(5)

which is known as the Kolmogoroff spectrum. Since the HK
eddies no longer contain the imprint of the stirring mecha-
nism, they do not allow the retrieval of the underlying insta-
bility. If MC satisfied expression (5), there would be no hope
of identifying the physical process(es) that generated the
turbulence we observe. However, comparison of relations (1)
and (5) shows that the turbulence found in MC is not of the
Kolmogoroff type, a conclusion already arrived at by Scalo
(1984). Therefore, if relation (1) is interpreted in terms of a
turbulent energy cascade (see, however, Henriksen and Turner
1984), we deal with LST which allows us to carry out the
retrieval of the “placental instability.”

o (1) ~ 173,
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III. LARGE-SCALE TURBULENCE

Since turbulent energy is distributed among eddies of differ-
ent sizes, one defines a spectral function F(k) .

(k) =fk°°F( k) dk. (6)

To obtain the total turbulent energy, one must integrate from
k = kg, where I, = w/k, is the size of the largest eddy. For
the HK eddies, it is well known that Fy (k) ~ &3/ which
in turn yields the v(/) versus / relation (5).

For the large energy-containing eddies, the model proposed
by Canuto and Goldman (CG) yields the spectral function
F(k) in terms of the growth rate n(k) of the underlying
instability. The result is (* = d/dk)

—2yF(k)k? = [knlf2 / kknl/z(nk‘z)'dk] , ()
ko

where y is numerical constant provided by the theory itself
(see eq. [6b] of CG).

IV. RETRIEVAL METHOD

Once a v(/) versus / function is known, one can eliminate
F(k) between equations (6) and (7). Introducing the variables

v( k) = vV (x),
n(k) = nof(x),
the result is an equation for f(x), i.e.,
[8(x)f? — x| (df/dx) — A(x)f* + B(x)f =0, (9)
where (’ = d/dx),

x=k/ky, k=u/l,

ng = Yl/zkovo,

(8)

g(x) = —2x‘2j;XV(x)V’(x)x2dx,

A(x) =2g(x)x7",  B(x) =2xg(xg)". (10)
Using the form
V(ix)=x"", 045<m=<0.70 (11)

suggested by the data, we solved equation (9) numerically.
(We were unable to find an analytic solution.) It can be
verified that at the point

Xy = m/@m=2,

(12)
fxd =1, [f(x4) =2—i*[1 - %(1 + 16m)1/2],

g'(xy) =0. (13)

The resulting growth rate n(k)/n, versus k/k, is plotted
in Figure 1 for m = 0.45, 0.5, and 0.70. In particular, m = 1/2
yields

g(xy) = m/0=m,

(14)

ie., n( k) = ny = constant.

A(x)=1,
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F16. 1.—The growth rate n(k) vs. k extracted from the observational
v({) vs. [ relation, eq. (1). The three curves correspond to three values of
the parameter “m.” The normalizations n, and %k, are given in terms of
the observational /, and v, in eq. (8).

Since Figure 1 is a direct consequence of the observational
v(l) versus [ relation, it represents a wuniversal diagnostic
diagram against which one can compare the expressions of
known instabilities so as to single out the one responsible for
the turbulence observed in MC.

V. AN ILLUSTRATIVE EXAMPLE

Among the instabilities frequently considered for the inter-
stellar medium is the Rayleigh-Taylor instability. We shall
show how Figure 1 suggests that a magnetic field must be
present. In fact, the growth rate corresponding to a nonmag-
netic R-T instability diverges for £k — oo as

n(k) ~k? or n(k)~k,
which are incompatible with the behavior of the n(k) of
Figure 1. This divergent behavior is, however, known to
disappear if a magnetic field is present, in which case n(k)
becomes constant as k — oo, and thus compatible with Figure
1. This qualitative argument illustrates how Figure 1 can be
used as a tool to discriminate among possible instabilities.

Let us now analyze the magpetic R-T instability in more
detail. A linear mode analysis (Parker 1979) of a medium
characterized by (B = §B)

BZ
7: SA=(1+a)u?, p=pe/*

(15)

a =
8mpu

indicates that the gas falls into condensed clouds suspended into
the magnetic field in the y — z plane (Parker 1966, 1967a, b,
1979). Elmegreen (1982) has extended Parker’s analysis to
include self-gravity and has concluded that this process may
indeed lead to the formation of giant cloud complexes. How-
ever, once that has occurred, there is still a tendency of the gas
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to break up into smaller dimensions across the magnetic field,
i.e., in the x-direction. Patker (1967a, b) showed that the latter
instability occurs “over so broad a spectrum of &k, as to
produce motions which have some resemblance to white noise
or turbulence.” While Parker could not carry the analysis any
further, his n(k) versus k, (Parker’s Fig. 1) may fit the
allowed region in Figure 1 provided the parameters o, u, and
B are properly chosen. Since Parker normalizes growth rate
and wavenumbers using A/u and A, (€ = nA/u, g = Ak),
we have

m(k)/ny = R,Q,

g _louf 1)
! A vy y'zrz ’

Using the second expression of (15) and imposing that
n(k)/n, = 1, corresponding to m = 1/2 in equation (1), we
have

k/ko = qu’

R,=—2. (19)

2
b= ‘y'zrzﬂ.

@2 = b(1 + a) = const, >
gl

(17)

Fitting the data by Dame er al (1984) to equation (1) with
= 1/2 yields a value for v3//, which once substituted in
expression (17), together with y = (37/8)2, finally gives

A1l
b=10 —|—, 18
(10)39 ( )

where g, is the local gravity in units of 3.5 X 107° cm s~ 2
(Elmegreen 1982). Since the size of the system /,, is somewhat
arbitrary, we shall define /;, = 2z,, where p(z,)/p, = 0.10.
We then have 4.6 A =/, ie, b= 2 Parker’s dispersion
relation for & then becomes an equation for a (the other two
quantities ¢, and g, can be taken from Elmegreen’s analysis).
Solving for a, we obtain the results shown in Table 1. No
solution exists for I > 0.33 (Myers 1978 has I = 0.25).

The values in the table are quite close to those generally
accepted for the intercloud gas (Spitzer 1978; Mouschovias
1976; Mouschovias, Shu, and Woodward 1974). It is im-
portant to remark that these values result from the use of a
single observational input, namely equation (1).

TABLE1

PROPERTIES OF THE “PLACENTAL
MEDIUM” OBTAINED FROM THE

RETRIEVAL METHOD
T a u B/(np)/?
010....... 014 1.23 23
0.20....... 007 127 1.7
0.25....... 004 129 1.3
0.30....... 0.02 130 .83

Note.—T is the adiabatic index of
the perturbation. # is in units of 10
kms ! Bisin pG. nisinem™3. p
is the mean molecular weight in units
of 1072 g,
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VI. CONCLUSIONS AND CAVEATS

The ever-increasing role played by turbulence in astrophysi-
cal settings is in stark contrast to the lack of a reliable theory
to treat it. Heisenberg and Kolmogoroff succeeded in present-
ing a model for medium-to-small eddies. Unfortunately, the
HXK model is of limited use in astrophysics since it does not
treat the “large eddies” region where most of the energy and
other bulk properties reside. CG have recently proposed a
model for LST by changing two basic ingredients of the HK
model: the form of the input energy (a constant in the HK
model) and, most importantly, a new “closure” that breaks
the universality characterizing the HK eddies. The CG model
was tested against (a) bulk properties, i.e., convective fluxes
for both astrophysical and laboratory turbulence (differing
some 12 orders of magnitude in the Prandtl number) and (%)
spectral properties, i.e., the predicted temperature spectral
function (T (k)) versus k fits the available data satisfactorily
(Canuto and Hartke 1985). The latter test is relevant since it
probes, more directly than the bulk properties, both the new
closure and the use of the linear growth rates. In the present
Letter we have used the CG model in an attempt to retrieve
the generating mechanism for turbulence in MC. Since the
first results are encouraging, it is important that we reiterate
the assumptions and limitations underlying the model not
lastly in the hope to spur interest to improve it.

We shall begin with the energy equation, equation (1) of
CG. Since the nonlinear term on the right-hand side is known
to have zero total integral (independently of how it is written),
we have

fk°°F(k)n(k) dk=0 or

fk°°F(k)[n(k) +vk?] dk = vf:’kzp(k) dk.  (19)

1] 1]

Let us now recall Chap. II, eq. (183) of Chandrasekhar (1961,
hereafter CH), namely &, = ¢,, where ¢, (rate of viscous
dissipation) and ¢, (rate at which energy is released by
buoyancy forces), are defined by CH equations (175) and
(178). Using the expressions for u,v,w provided in CH, one
can show that g, is exactly the right-hand side of equation
(19). Let us now compute ¢,. Let F(k), G(k), and H(k) be
the spectral function of the velocity square, temperature square,
and the product of velocity and temperature. Since these
quantities satisfy three coupled nonlinear differential equa-
tions which are unsolvable, one assumes that the ratios of any
two fluctnating quantities can be approximated by the value
provided by the linear analysis. Using equations (100) and
(104) of CH, a long but straightforward algebra shows that ¢,
is exactly the left-hand side of equation (19). The form of the
first of equation (19) is therefore justified. The above proce-
dure is general and can easily be extended to other cases.
Though more laboriously, it can also be shown that equation

CANUTO AND BATTAGLIA

Vol. 294

(19) remains unchanged in the presence of rotation and mag-
netic fields [of course n(k) becomes n(k, 2, B)]. Incidentally,
the expression for the convective flux, equation (9) of CG, was
obtained with this method.

Let us further remark that Ledoux, Schwarzschild, and
Spiegel (1961) had already provided a derivation of equation
(1) of CG from the Navier-Stokes equations and that it can
also be derived from equation (19) of Yamaguchi (1963), using
the form of the spectral function H(k) derived above.

Having checked the integral properties of the left-hand side
of equation (1) of CG, one can reinstate the integration over a
finite & range and add the nonlinear transfer term, whose
form is discussed in CG.

The second set of remarks concerns the form of the closure
and the inclusion of other physical effects. Since the total
integral of the nonlinear terms is zero, the transfer term is
interpreted as a two-step process, an energy loss by eddies in
the interval k,—k [represented, as losses usually are, by
k2F(k)], followed by the redistribution of the same energy to
all the remaining eddies in the interval k—oo (whether this last
process is viewed as due to the corrosive action of the k—co
eddies via a turbulent viscosity does not change the physical
picture). The critical problem is how to quantify this last
process since it can no longer have the HK universal form. If
the eddies were freely evolving (like the HK eddies), the mean
free path A, would be approximately equal to their size.
However, in the case of forced turbulence, A, depends on the
rate at which energy is being pumped into the system, i.e., on
n(k). Through this dependence, one can therefore account for
different physical effects, for example, compressibility [in a
rotating thin disk, for example, n(k) satisfies a cubic equation
if 8p = 0, and a fifth-order equation if 6p # 0]. In the case of
the HK eddies, where the source term is taken to be constant
and the closure has a universal character, the inclusion of
compressibility effects is particularly difficult to visualize and
quantify, as many attempts in the literature testify. The pres-
ent model for LST does permit the inclusion, through both the
source and the transfer term, of physical phenomena (e.g.,
compressibility, rotation, magnetic fields, changes in the opti-
cal thickness, etc.), characterizing the background. What the
model cannot yet do is to account for the effects of com-
pressibility directly on the “turbulent elements” themselves.
This is a limitation which future work will try to correct.

In conclusion, the goal of this Lerter was that of intro-
ducing and illustrating a retrieval method using equation (1)
as input. Since the results are interesting, it seems worthwhile
to try and improve on the basic model so as to make this
retrieval method more realistic.
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